SPLAYED, a Novel SWI/SNF ATPase Homolog, Controls Reproductive Development in Arabidopsis

نویسندگان

  • Doris Wagner
  • Elliot M. Meyerowitz
چکیده

BACKGROUND The plant-specific transcriptional activator LEAFY (LFY) is a central regulator of the transition to reproductive development in Arabidopsis. LFY has a second, later role in the induction of floral homeotic gene expression. Available data suggests that, while LFY activity is controlled via interaction with tissue-specific coactivators, other mechanisms exist that regulate LFY activity, the identity of which are not known. RESULTS We have identified a novel component in the temporal control of the switch from vegetative to reproductive development in Arabidopsis thaliana. The SPLAYED (SYD) gene product acts with LFY to regulate shoot apical meristem identity. SYD is also involved in the regulation of floral homeotic gene expression. In addition, mutations in SYD cause LFY-independent phenotypes that indicate that SYD is necessary for meristem maintenance during reproductive development and that SYD is required for proper carpel and ovule development. SYD encodes a presumptive Arabidopsis homolog of the yeast Snf2p ATPase, which is implicated in transcriptional control via chromatin remodeling. CONCLUSIONS SYD acts as a LFY-dependent repressor of the meristem identity switch in the floral transition, most likely by altering the activity of the LFY transcription factor. That SYD regulates flowering in response to environmental stimuli suggests that the effect of environmental cues on plant development may be achieved in part by regulating transcription factor activity via alteration of the chromatin state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering.

Chromatin remodeling is essential for the reprogramming of transcription associated with development and cell differentiation. The SWI/SNF complex was the first chromatin remodeling complex characterized in yeast and Drosophila. In this work we have characterized an Arabidopsis thaliana homolog of Brahma, the ATPase of the Drosophila SWI/SNF complex. As its Drosophila counterpart, Arabidopsis t...

متن کامل

Unique, shared, and redundant roles for the Arabidopsis SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED.

Chromatin remodeling is emerging as a central mechanism for patterning and differentiation in multicellular eukaryotes. SWI/SNF chromatin remodeling ATPases are conserved in the animal and plant kingdom and regulate transcriptional programs in response to endogenous and exogenous cues. In contrast with their metazoan orthologs, null mutants in two Arabidopsis thaliana SWI/SNF ATPases, BRAHMA (B...

متن کامل

A role for chromatin remodeling in regulation of CUC gene expression in the Arabidopsis cotyledon boundary.

The CUP-SHAPED COTYLEDON (CUC) genes CUC1, CUC2 and CUC3 act redundantly to control cotyledon separation in Arabidopsis. In order to identify novel regulators of this process, we have performed a phenotypical enhancer screen using a null allele of cuc2, cuc2-1. We identified three nonsense alleles of AtBRM, an Arabidopsis SWI/SNF chromatin remodeling ATPase, that result in strong cotyledon fusi...

متن کامل

Chromatin Remodeling ATPases and Plant Development

ATP-dependent chromatin remodeling is an important facet of the regulation of gene expression in eukaryotes. Assembly of DNA into nucleosomes, the basic unit of chromatin, restricts the accessibility of cisregulatory elements in the core DNA for transcription factors that recognize and bind these sites. Chromatin remodeling ATPases use the energy derived from ATP hydrolysis to induce conformati...

متن کامل

Caenorhabditis elegans SWI/SNF Subunits Control Sequential Developmental Stages in the Somatic Gonad

The Caenorhabditis elegans somatic gonadal precursors (SGPs) are multipotent progenitors that give rise to all somatic tissues of the adult reproductive system. The hunchback and Ikaros-like gene ehn-3 is expressed specifically in SGPs and is required for their development into differentiated tissues of the somatic gonad. To find novel genes involved in SGP development, we used a weak allele of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2002